
Power Spectra from Symbol Sequences and 
!-Machine Spectral Reconstruction Theory

Reading for this lecture:

BTFM1 and BTFM2 articles in CMR and Lecture Notes
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Power Spectra of Discrete Series

SN = s0, s1, . . . , sn , . . . , sN ! 1 sn ! {0, 1}

Define the Discrete Fourier Transform as:

F (SN ) = S(f) =
1√
N

N ! 1∑

m=0

e! 2! imfsm

The Power Spectrum is defined as:

P(f) = |S(f)|2

Note: For purposes of computation, let’s assign the numerical value of ‘1’ to 
symbol ‘1’, and the numerical value ‘-1’ to symbol ‘0’. This choice is not unique. 
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The Correlation Function

Let’s substitute the expression for the Fourier Transform into the for Power Spectrum:

P(f) =
1
N

N −1∑

m =0

N −1∑

m ′=0

e−2! if (m−m ′)sm sm ′

Now let n = m′ ! m

P(f) = 1 +
2
N

N −1!

n=1

N −n−1!

m ′=0

cos(2πnf)sm ′sm ′+n

Define two-point correlation function as

C(n) ! "sm ′sm ′+n #=
1

N $ n

N −n−1∑

m ′=0

sm ′sm ′+n
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P(f) = 1 +
2
N

N−1!

n=1

(N − n)C(n) cos(2πnf)

This expression relating the power spectrum and the correlation function suggests that the latter can be 
found from Fourier analysis of the former, i.e.,

C(n) =
! 1

0
P(f ) cos(2! nf ) df

This is a rather general result.  

It is more convenient to work with the correlation functions in a slightly different form:

q(n) =
1
2

[C(n) + 1]

q(n) is the probability that two symbols at distance n are identical. 
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A Classification Scheme for Power Spectra

Power Spectra can classified according to their scaling behavior with the length of the sequence.

P(f) ∼ N2

P(f) ∼ N

P(f) ∼ Nγ 1 < γ < 2

i. Pure Point

ii. Continuous

iii. Singular Continuous

This scheme is rather basic, and certainly doesn’t exhaust all the possibilities. For instance, 
the power spectrum could scale like NlogN. 
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Examples of Power Spectra: Unbiased Coin Toss

For a completely random sequence, both the correlation function and the power spectrum are 
featureless.
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Examples of Power Spectra: Period 1
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Examples of Power Spectra: Period 2
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Examples of Power Spectra: Golden Mean
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Examples of Power Spectra: Even System
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Examples of Power Spectra: Morse-Thue

We have the mapping: {0, 1} ➔ {01, 10}
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Review

• Power spectra are naturally related to a two-point correlation function of the    original 
sequence. (Wiener-Kninchin theorem)
• Thus, power spectra are insensitive to higher-order correlations.
• This is because the finding the magnitude of the Fourier Transform throws away phase 
information. 
• Power Spectra can be classified by their scaling behavior with the sequence size.
• They come in three types: pure point, continuous, singular continuous. A spectrum may have 
combinations of these three.
• Looking at the power spectrum can tell much about the statistics of the sequence.

Question:

Is it possible to infer the statistics of the sequence from knowledge of the power spectrum alone? 
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ε-Machine Spectral Reconstruction Theory

In the standard approach to pattern discovery of a sequence, one finds the frequency of all 
subsequences (words) of length r and builds a parse tree. Histories with equivalent futures are 
merged to form the causal states. Since, we can find the two point correlation function from 
the power spectra, perhaps we can relate these to estimate sequence probabilities, and thus 
build a parse tree as normal. 

This is what ε-machine spectral reconstruction (εMSR) does.

We begin by noting that there are constraints among the sequence probabilities: 

Pr(u) = Pr(0u) + Pr(1u) = Pr(u0) + Pr(u1)

Additionally, we require that sum of the probability of finding sequences of a given length be 
unity (normalization):

!

ω∈Ar+1

Pr(ω) = 1
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We refer to these equations as Spectral Equations at a given r. 

q(n) =
!

s=0,1

!

ωr

Pr(s! r s)

q∞ = (Pr(0))2 + (Pr(1)) 2

Finally, we relate correlation functions to sequence probabilities. 

For many spectra, the correlation functions approach an asymptotic value, and this can related to the 
probability of finding a 1 or 0 in the sequence by:

for n > 1, and where ω^r is the subset of all sequences of length n-1.
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The r=1 Equations:

q! = (Pr(00) + Pr(01))2 + (Pr(10) + Pr(11))2

Pr(0) = Pr(00) + Pr(10) = Pr(01) + Pr(00)

Pr(11) + Pr(10) + Pr(01) + Pr(00) = 1

q(1) = Pr(11) + Pr(00)

We have four equations and four unknowns. We can solve!
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The r=2 Equations:

Pr(001)− Pr(100) = 0 Pr(011) ! Pr(110) = 0

Pr(001) + Pr(101)− Pr(011)− Pr(010) = 0

Pr(111) + Pr(101) + Pr(011) + Pr(001) + Pr(110) + Pr(100) + Pr(010) + Pr(000) = 1

q(1) = Pr(111) + Pr(110) + Pr(000) + Pr(001)

q(2) = Pr(111) + Pr(101) + Pr(000) + Pr(010)

q! = (Pr(000) + Pr(001) + Pr(010) + Pr(011))2 +
(Pr(100) + Pr(101) + Pr(110) + Pr(111))2,

Eight unknowns, only seven equations!
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Where can we get an additional constraint?

Let’s use correlation function q(3) write this in terms of sequences of length three.

q(3) = Pr(1111) + Pr(1101) + Pr(1011) + Pr(1001) + Pr(0110) + Pr(0010) + Pr(0100) + Pr(0000)

q(3) =
Pr2(111)

Pr(111) + Pr(110)
+

Pr(110)Pr(101)
Pr(100) + p(101)

+

Pr(101)Pr(011)
Pr(010) + Pr(011)

+
Pr(100)Pr(001)

Pr(000) + Pr(001)
+

Pr2(000)
Pr(000) + Pr(001)

+
Pr(001)Pr(010)

Pr(010) + Pr(011)
+

Pr(010)Pr(100)
Pr(100) + Pr(101)

+
Pr(011)Pr(110)

Pr(111) + Pr(110)

Where we have used relations of the form

Pr(s0s1s2s3) = Pr(s0s1s2) Pr(s3|s0s1s2) ! Pr(s0s1s2) Pr(s3|s1s2) =
Pr(s0s1s2) Pr(s1s2s3)
Pr(s1s20) + Pr(s1s21)
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We refer to this latter approximation as memory length reduction. 

We can then write out the εMSR algorithm as follows:
• Find the Correlation Functions from the Power Spectrum. 
• Write out and solve the Spectral Equations and for sequences of a given r.
• We label candidate States by their length r histories.
• We estimate the transition probabilities between states from the sequence 
probabilities.
• We merge States with equivalent futures to form Causal States. This gives us a 
candidate ε-machine.
• We generate correlation functions and the power spectrum from the candidate ε-
machine.
• We compare with this with the original correlation functions and power spectrum.
• If there is insufficient agreement, we increment r and repeat the last six steps. 

Since we have applied memory length reduction, this effectively limits the the kinds of 
processes we can find to those of block Markovian of length r. That is, we can label all possible 
states by their length r histories.  
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Limitations to ε-Machine Spectral 

Reconstruction Theory

As r increases, we are forces to go to correlation functions of higher and higher n to obtain a complete 
set of equations. This puts a limitation on how large r can be.

r nmax #Eqs #Terms

2 3 8 8

3 7 16 128

4 15 32 32,768

5 31 64 ~10^9
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Examples Worked in Class
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