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In previous publications [Varn et al. (2002). Phys. Rev. B, 66, 174110; Varn et al.

(2007). Acta Cryst. B63, 169–182] we introduced and applied a new technique for

discovering and describing planar disorder in close-packed structures directly

from their diffraction patterns. Here, we provide the theoretical development

behind those results, adapting computational mechanics to describe one-

dimensional structure in materials. We show that the resulting statistical model

of the stacking structure – called the �-machine – allows the calculation of

measures of memory, structural complexity and configurational entropy. The

methods developed here can be adapted to a wide range of experimental

systems in which power spectra data are available.

1. Introduction

Stacking faults (SFs) occur in crystal structures when one

crystal plane, or more generally one modular layer (ML)

(Varn & Canright, 2001), is displaced from another by a non-

lattice vector. Many different kinds of SFs have been

described in the literature, including growth faults, deforma-

tion faults and layer-displacement faults (Sebastian & Krishna,

1994). Provided the disorder is confined to the (dis)placement

of otherwise undefected MLs, the specification of the crystal

structure formally reduces to a one-dimensional list – called

the stacking sequence – that gives the successive orientations

of the MLs encountered as one moves along the stacking

direction.

The problem of inferring planar disorder and structure in

layered materials from their diffraction patterns (DPs) has a

long history (Sebastian & Krishna, 1994; Estevez-Rams et al.,

2007). While early researchers were able to derive analytical

expressions for the DP for specific types of SFs (Hendricks &

Teller, 1942; Wilson, 1942), the inversion of a DP to find the

disordered stacking sequence from which it arose has proven

more challenging. This difficulty arises from the well known

fact that the DP loses phase information. Indeed, there are

many different stacking configurations for disordered crystals

that give the same DP and, thus, it is not possible to invert the

DP to find a unique configuration. Often, then, one chooses

to find a statistical expression for an ensemble of disordered

crystals, each of which could have given rise to the observed

DP. If the disorder is not too pronounced, an underlying

periodic structure is often retained, and it can be fruitful to

examine the effects of various physically plausible SFs on the

Bragg-like reflections.1 By comparing the DPs from crystals

with hypothetical SFs to experimental DPs, one can frequently

deduce the kind and amount of SFs present. Techniques that

use this approach are collectively called the fault model (FM)

(Varn et al., 2002). These approaches are indirect, because one

begins with a set of postulated SFs and then sorts through

them, searching for one or several that best fit the data. This is

satisfactory, however, only if the disorder is sufficiently weak

that it preserves the integrity of Bragg-like reflections.

Here we provide the theoretical foundations for a direct

method of discovery and quantification of planar structure and

disorder in close-packed structures (CPSs) that overcomes

many of these difficulties. Although this technique has been

previously applied to the detection and identification of

disordered stacking sequences in ZnS (Varn et al., 2002, 2007),

the theoretical basis for that analysis has not been presented in

detail, and we do that here. This method utilizes a type of

stochastic finite-state automaton (Paz, 1971; Hopcroft &

1 For crystals showing only mild disorder, we refer to Bragg-like regions of the
DP that are centered on former Bragg reflections and that contain highly
enhanced, yet diffuse scattering. They are distinguished by regions that would
have received no refracted intensity were the crystal undefected. Regions that
receive weak scattered intensity will be described as broadband.

electronic reprint



Ullman, 1979) or hidden Markov model (Rabiner, 1989;

Elliot et al., 1995) to describe the crystal structure. It does

not assume an underlying periodic stacking structure but

instead finds the frequency of occurrence of all possible

stacking sequences up to a given length and uses this to

construct a model that captures the statistics of the stacking

sequence. In this way, no a priori assumptions about the crystal

structure or kind of disorder are required and, in this sense, it

directly determines the stacking structure. This scheme for

describing planar disorder unites both fault and crystal

structure into a single framework. There is no need to treat

each crystal structure or faulting scheme separately. This

method treats any amount and kind of planar disorder

present. Finally it quantitatively uses all of the information

contained in the DP, both in the Bragg-like peaks and in the

broadband scattering, to build a unique model of the stacking

structure.

Computational mechanics (Crutchfield & Young, 1989;

Shalizi & Crutchfield, 2001; Crutchfield, 2012) is an approach

to discovering, describing and quantifying patterns. It provides

for the construction of the minimal and unique model for a

process that is optimally predictive; this model comes in the

form of a directed graph called an �-machine. A process’s

�-machine is minimal in the sense of requiring the fewest

model components to represent the process’s structures and

disorder; it is optimal in the sense that no alternative repre-

sentation is more accurate; and it is unique in the sense that

any alternative which is both minimal and optimally predictive

is isomorphic to it. An �-machine’s algebraic structure

captures a process’s symmetries and approximate symmetries.

From an �-machine measures of a process’s memory, entropy

production and structural complexity can be found. We

demonstrate elsewhere (Varn et al., 2007) that knowledge of

the �-machine and the energy coupling between MLs allows

one to calculate the average stacking energy for a disordered

layered material.

Before being adapted to the present application of disorder

in crystals, computational mechanics had been used to analyze

structural complexity in a wide range of nonlinear processes,

such as cellular automata (Hanson, 1993; Hanson & Crutch-

field, 1997; Hordijk et al., 2001) and the one-dimensional Ising

model (Crutchfield & Feldman, 1997; Feldman & Crutchfield,

1998), as well as to experimental physical systems, such as the

dripping faucet (Gonçalves et al., 1998) and conformational

dynamics of single molecules (Li et al., 2008; Kelly et al., 2012).

Additionally, information-theoretic ideas and finite-state

automata have been previously applied to the problem of

polytypism and stacking disorder (Varn & Canright, 2001;

Estevez-Rams, Aragon-Fernandez et al., 2003; Estevez-Rams

et al., 2008).

Our development here is organized as follows. In x2 we give
a detailed account of our procedure for discovering and

quantifying pattern and disorder in CPSs; in x3 we discuss

computational measures calculable from the reconstructed

�-machine and interpret architectural features of the

�-machine in terms of periodic stacking structures; and, lastly,

in x4 we give our conclusions.

2. �-Machine spectral reconstruction

Previous techniques of �-machine reconstruction used a

sequence of data produced by a process (Crutchfield & Young,

1989; Shalizi et al., 2002). Here the experimental signal comes

in the form of a power spectrum, and we need to develop a

technique to infer the �-machine from this type of data. To

emphasize that we are using a power spectrum (in this case the

DP) instead of a spatial or temporal sequence as has been

done previously, we call this new class of inference algorithms

�-machine spectral reconstruction – abbreviated as �MSR and

pronounced ‘emissary’. We emphasize that our goal remains

unchanged – to find the process’s underlying description. It is

only the inference procedure that is changed. In this section

we give a detailed account of �MSR as applied to the problem

of discovering pattern and disorder in CPSs.

We divide �MSR into five steps. First, we extract correlation

information from a DP. Second, we use this to estimate

stacking-sequence probabilities of a given length. Third, we

reconstruct an �-machine from this distribution. Fourth, we

generate a DP from the �-machine. Finally, we compare this

�-machine DP to the original. If there is insufficient agree-

ment, we repeat the second through to fourth steps, estimating

stacking-sequence probabilities at a longer length, building a

new �-machine, and again comparing with the original DP. In

the final subsection, we give relations that can be used to

determine the quality of experimental data.

2.1. Correlation functions from DPs

Let us make the following assumptions concerning DPs

obtained from disordered, layered materials. We assume that:

(1) the MLs themselves are undefected and free of any

distortions;

(2) the spacing between MLs does not depend on the local

stacking arrangement;

(3) each ML has the same scattering power;

(4) the faults extend completely across the crystal; and

(5) the probability of finding a given stacking sequence in

the crystal remains constant through the crystal.

The last assumption of stationarity guarantees spatial-

translation invariance.

Let N be the number of hexagonal, close-packed MLs, with

each ML occupying one of three orientations, denoted A, B or

C (Sebastian & Krishna, 1994). We use three statistical

quantities, QcðnÞ, QaðnÞ and QsðnÞ (Yi & Canright, 1996): the

two-layer correlation functions (CFs), where c, a and s stand

for cyclic, anti-cyclic and same, respectively.2 QcðnÞ is defined
as the probability that any two MLs at a separation of n are

cyclically related. By cyclic, we mean that if the ith ML is in

orientation A (B;C), say, then the ðiþ nÞth ML is in orien-

tation B (C;A). QaðnÞ and QsðnÞ are defined in a similar

fashion. Since these are probabilities, 0 � Q�ðnÞ � 1, where
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2 These are identical to the QðmÞ, RðmÞ and PðmÞ often referred to in the
literature (Kabra & Pandey, 1988; Shrestha & Pandey, 1996).
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� 2 fc; a; sg. Additionally, at each n it is clear thatP
� Q�ðnÞ ¼ 1.

With these assumptions and definitions in place, the total

diffracted intensity along the 10:‘ row can be written as3

(Guinier, 1963; Berliner & Werner, 1986)

Ið‘Þ ¼  2ð‘Þ
�
sin2ð�N‘Þ
sin2ð�‘Þ � 2

ffiffiffi
3
p XN

n¼1

�
ðN � nÞ�

�
QcðnÞ cos 2�n‘þ �

6

� �

þQaðnÞ cos 2�n‘� �
6

� ��	

; ð1Þ

where ‘ is a continuous variable that indexes the magnitude of

the perpendicular component of the diffracted wave,

k ¼ 2�‘=c, and c is the spacing between adjacent MLs. The

function  2ð‘Þ accounts for atomic scattering factors, the

structure factor, dispersion factors or any other effects for

which the experimentally obtained DPs may need to be

corrected (Prince, 2006; Woolfson, 1997).

It is convenient to work with the intensity per ML, instead

of the total intensity, so we define the corrected diffracted

intensity per ML, Ið‘Þ, as

Ið‘Þ ¼ Ið‘Þ
 2ð‘ÞN : ð2Þ

We will always use Ið‘Þ unless otherwise noted and call this the

diffracted intensity or simply the diffraction pattern. Observe

that the diffracted intensity Ið‘Þ integrated over any unit ‘
interval is unity regardless of the particular values of the CFs

(Varn, 2001). We may then use this fact to normalize experi-

mental data.

The form of equations (1) and (2) suggests that the CFs can

be found from the DP by Fourier analysis (Estevez-Rams,

Martinez et al., 2001; Estevez-Rams, Penton-Madrigal et al.,

2001; Varn, 2001).4 Let us define XðnÞ and YðnÞ as

XðnÞ ¼
I

Ið‘Þ cosð2�n‘Þ d‘ ð3Þ

and

YðnÞ ¼
I

Ið‘Þ sinð2�n‘Þ d‘; ð4Þ

where the small circle in the integral sign indicates that the

integral is to be taken over a unit interval in ‘. It is possible to
show (Varn, 2001) that in the limit N!1

QcðnÞ ¼
1

3
� 1

3
XðnÞ �

ffiffiffi
3
p

YðnÞ
h i

ð5Þ

and

QaðnÞ ¼
1

3
� 1

3
XðnÞ þ

ffiffiffi
3
p

YðnÞ
h i

: ð6Þ

Thus, the CFs can be found by Fourier analysis of the DP.5

Since the (corrected!) DP is periodic in ‘ with period one,

there is freedom in the selection of the unit ‘ interval used for

reconstruction. If the DP were not subject to any experimental

error, then the choice of the integration interval would be

driven solely by convenience. However, real DPs do have

error and, thus, the selection of an appropriate unit ‘ interval
for �MSR is of some importance. In x2.6 we offer guidance

in this selection. We do note, however, that once the unit ‘
interval has been selected and the CFs determined, this

represents the maximum information that can be extracted

from the DP along the 10:‘ row. That is, this procedure uses

both the Bragg-like reflections (should they exist), as well as

the broadband diffracted intensity. To the extent that the DP is

accurately represented by equation (1) and can be corrected

for experimental effects [as incorporated in the  2ð‘Þ pre-
factor], we say that �MSR uses all of the information available

from the DP.

2.2. Estimating the stacking-sequence distribution

In the second part of our approach, we estimate the

distribution of stacking sequences from the two-layer CFs.

First, though, we must consider what kind of information the

CFs contain about stacking sequences. Therefore, let us define

the stacking process as the effective stochastic process induced

by scanning the stacking sequence along the stacking direc-

tion. We map the absolute orientations of the MLs fA;B;Cg
onto a binary alphabet A ¼ f0; 1g (Kabra & Pandey, 1988;

Sebastian & Krishna, 1994). This is sometimes referred to as

the Hägg notation. Transitions between MLs are labeled as

‘1’ if the two MLs are cyclically related [A! B! C! A]

and ‘0’ if the two MLs are anti-cyclically related

[C! B! A! C]. Thus, the stacking of MLs in CPSs can

be conveniently thought of as a binary ‘spin chain’, where each

spin si 2 A labels the interlayer transition from one ML to the

next (Varn & Canright, 2001).

We estimate the probability distribution Pr(!) of finding

sequences ! averaged over the sample by considering a series

of constraints on the sequence probabilities. Some of these

constraints are simple consequences of the mathematics; some

come from the CFs themselves. From conservation of prob-

ability, we have

PrðuÞ ¼ Prð0uÞ þ Prð1uÞ ¼ Prðu0Þ þ Prðu1Þ; ð7Þ

Acta Cryst. (2013). A69, 197–206 D. P. Varn et al. � �-Machine spectral reconstruction theory 199
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3 We use the standard notation conventions here. See Guinier (1963) and
references therein for a complete discussion of typical geometries and
notations. Note, however, that our definition of ‘ (see text) differs from that of
many other authors (Sebastian & Krishna, 1994).
4 While our development here is specifically fashioned for case of analyzing
DPs from CPSs, the approach is much more general than it may seem. Under
mild conditions, the Wiener–Khinchin theorem (Badii & Politi, 1997)
guarantees that power spectra can be written in terms of autocorrelation
functions, as is done in equation (1). Thus, this kind of decomposition is
generic and relations connecting power spectra to autocorrelation functions
and then to sequence probabilities (see the spectral equations in x2.2) typically
exist.

5 The method detailed here for finding CFs from DPs was used in previous
analyses (Varn et al., 2002, 2007). However, other techniques do exist
(Estevez-Rams, Martinez et al., 2001; Estevez-Rams, Penton-Madrigal et al.,
2001; Estevez-Rams, Aragon-Fernandez et al., 2003; Estevez-Rams, Leoni et
al., 2003).
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for all u 2 Ar
, whereAr

is the set of all sequences of length r in

the Hägg notation.6 Additionally, we require that the sum of

all probabilities of sequences of length rþ 1 be normalized,

i.e. P
!2Arþ1

Prð!Þ ¼ 1: ð8Þ

Equations (7) and (8) together provide 2r constraints among

the 2rþ1 possible stacking sequences of length rþ 1.

The remaining 2r constraints come from relating CFs to

sequence probabilities via the relations

Q�ðnÞ ¼
P
!2An

�

Prð!Þ; ð9Þ

where An
� is the subset of length-n sequences that generate a

cyclic (� ¼ c) or an anti-cyclic (� ¼ a) rotation between MLs

at separation n. A sequence generates a cyclic (anti-cyclic)

rotation between MLs at separation n if 2m� n ¼ 1 ðmod 3Þ,
where m is the number of ones (zeros) in the sequence. We

take as many of the relations in equation (9) as necessary to

form a complete set of equations to solve for Prð!Þ. For r ¼ 1

and r ¼ 2 the sets of equations are linear and admit analytical

solutions. At r ¼ 3 the first nonlinearities appear due to the

necessity of using CFs at n ¼ 5 to obtain a complete set of

equations. We rewrite the conditional probabilities at n ¼ 5 in

terms of those at n ¼ 4 via relations of the form

Prðs0s1s2s3s4Þ ¼Prðs0s1s2s3ÞPrðs4js0s1s2s3Þ
’Prðs0s1s2s3ÞPrðs4js1s2s3Þ
¼ Prðs0s1s2s3ÞPrðs1s2s3s4Þ

Prðs1s2s3Þ
¼ Prðs0s1s2s3ÞPrðs1s2s3s4Þ

Prðs1s2s30Þ þ Prðs1s2s31Þ
: ð10Þ

In the second line we make the replacement

Prðs4js0s1s2s3Þ ’ Prðs4js1s2s3Þ. We refer to this approximation

as memory-length reduction, as it effectively limits the memory

(from four previous spins to three previous spins in this case)

that we consider in order to obtain a complete set of equa-

tions. At fixed r the set of equations describes the stacking

sequence as an rth-order Markov process.

We refer collectively to the set of equations (7), (8) and (9)

as the spectral equations (SEs) at a given r. In Appendix A we

give the analytical solutions for the r ¼ 1 and r ¼ 2 SEs, and

we write out the SEs for r ¼ 3. Although this latter set of

equations is nonlinear, numerical techniques may be used to

solve them for each particular set of CFs.

2.3. �-Machine reconstruction from the stacking process

In the third part of our approach, we infer the stacking

process’s �-machine from the estimated distribution of

stacking sequences.

Suppose we know the probability distribution Prð!Þ of
stacking sequences ! ¼ . . . s�2s�1s0s1s2 . . ., where si 2 A and

! is a stacking sequence in the Hägg notation. Then at each

ML we define the ‘past’ !
 
as all the previous transitions si seen

and the ‘future’ !
!
as those transitions si yet to be seen: that is,

! ¼ ! !!.
Let !

 
1 and !

 
2 represent two distinct pasts. These two pasts

are called equivalent if and only if each has the same prob-

ability distribution over possible futures, and we express this

equivalence as !
 

1 � !
 

2. All pasts that are equivalent are

grouped together, so that one need not keep track of each

particular past, but rather just to the group to which each past

belongs. More formally, the effective states or causal states

(CSs) of the stacking process are defined as the sets of pasts !
 

that lead to statistically equivalent futures,

!
 

i � !
 

j if and only if Prð!!j! iÞ ¼ Prð!!j! jÞ; ð11Þ

for all futures !
!
, where Prð!!j! iÞ is the conditional probability

of seeing !
!

having just seen !
 

i (Crutchfield & Young, 1989;

Crutchfield, 1994).

As a default set of CSs, we initially assume that each history

of length r forms a unique CS. So, for �MSR at r, we begin with

2r CSs, each labeled by its unique length-r history. We refer to

this set of CSs as candidate causal states, as they may not be the

true CSs that describe the stacking process. If we label each

past by the last r spins seen, then this implies that the only

allowed state-to-state transitions are of the form s0v! vs,

where v 2 Ar�1
and s 2 A. All other transitions are taken to

be zero.

As a specific example we treat the r ¼ 2 case. The candidate

CSs and their state-to-state transitions are shown in Fig. 1.

Here all possible pasts of length r ¼ 2 are distinguished

(22 ¼ 4 in this example) and all possible transitions between

these candidate CSs are allowed (two transitions out of each

state for 2� 4 ¼ 8 possible transitions). Each state is labeled

by the last two observed spins. Consider the candidate CS K01

in Fig. 1. The next possible spin is either a 0 or a 1, leading to
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Figure 1
The topological state architecture of an r ¼ 2 �-machine showing all of
the possible candidate causal states and allowed state-to-state transitions.
Each state Ki is labeled by the last two observed spins. Notice that each
state has two possible successor states, such that s0v! vs, where
v 2 Ar�1

and s 2 f0; 1g. For example, we see that K01 has two possible
successor states, namely K10 (01! 10) and K11 (01! 11).

6 The parameter r plays the same role in �MSR as the Reichweite, s, does in
Jagodzinski’s disorder model (Jagodzinski, 1949). They are both related to the
number of previous MLs used to construct conditional probabilities, but differ
somewhat because each is originally defined in a different nomenclature
system. They also differ because Jagodzinski’s disorder model assumes spin-
flip invariance, while �MSR does not.
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the sequences 010 or 011. These transitions should lead to

states that are labeled by the last two spins seen, in this case 10

and 11, respectively. Examining the graph in Fig. 1, we see that

the successor states to K01 are K10 (on a transition of a 0) and

K11 (on a transition of a 1). These latter two candidate CSs

correspond to the pasts 10 and 11, respectively, as they must.

We now estimate the state-to-state transition probabilities

between candidate CSs as follows. Define the transition

matrices T
ðsÞ
Si!Sj

as the probability of making a transition from a

candidate CS Si to a candidate CS Sj on seeing spin s.

Then we can write the transition matrix as

T
ðsÞ
Si!Sj

¼ TðsÞs0v!vs: ð12Þ

We estimate these transition probabilities from the conditional

probabilities,

TðsÞs0v!vs ¼Prðsjs0vÞ

¼ Prðs0vsÞ
Prðs0vÞ

: ð13Þ

We now apply the equivalence relation (11) to merge histories

with equivalent futures. The set of resulting CSs, along with

the transitions between states, defines the process’s �-machine.

This is the minimal, unique description of the stacking process

that optimally produces the stacking distribution Prð!Þ. At

this point we should refer to this as the candidate �-machine, as

it will reproduce the CFs used to find it, but it may fail to

reproduce CFs at larger n satisfactorily. We address this issue

of agreement between theory and experiment in x2.5.

2.4. CFs and DPs from the reconstructed �-machine

In the fourth part, we use the reconstructed �-machine to

generate CFs and DPs via Monte Carlo methods (Berliner &

Werner, 1986; Kabra & Pandey, 1988). Specifically we use the

reconstructed �-machine to generate a sample spin sequence

M spins long in the Hägg representation and convert this to

the ABC notation. CFs can be found directly by scanning this

latter sequence. The DP is readily calculated from equations

(1) and (2). It has been shown that for sufficiently large M, the

DP for diffuse scattering scales as M (Varn, 2001), so that the

number of MLs used to calculate the DP is not important, if M

is sufficiently large (say, 10 000). To reduce the error due to

fluctuations, it is desirable to use as long a sequence as possible

to find the CFs.

2.5. Comparing experimental and theoretical CFs and DPs

In the fifth and final part we compare the CFs and DPs

predicted by the �-machine to those of the original DP. If there

is not sufficient agreement, we increment r and repeat the

reconstruction and comparison.

More precisely, in comparing the DP predicted by the

reconstructed �-machine (theory) with the original DP

(experiment), we need a quantitative measure of the

goodness-of-fit between them. We use the profile R factor,7

which is defined as

R ¼
H jI�Mð‘Þ � Iexpð‘Þj d‘H

I�Mð‘Þ d‘
� 100%; ð14Þ

where I�Mð‘Þ is the �-machine DP and Iexpð‘Þ is the experi-

mental DP. Notice that the denominator is unity due to

normalization.

It is important, however, not to over-fit the original data, so

we should not seek a fit that is closer than experimental error.

Let us define �Iexpð‘Þ as the fluctuation-induced error in the

DP. Then the fluctuation error Rerr can be defined as

Rerr ¼
H j�Iexpð‘Þj d‘H

Iexpð‘Þ d‘
� 100%: ð15Þ

Notice that the denominator once again reduces to unity due

to normalization. Rerr gives a measure of how two DPs taken

from the same sample over the same interval will differ from

each other. Clearly we do not wish to estimate an �-machine

that gives better agreement than this. So, our criterion for

stopping reconstruction is when jR �Rerrj � �, where the

acceptable-error threshold � is set in advance.

2.6. Figures-of-merit from �MSR

An issue we have so far neglected is the CFs’ independence.

In order to solve the SEs, part 3 in �MSR (x2.2), we need 2rþ1

independent constraints. It is therefore important to identify

and avoid using any redundancies inherent in the CFs to solve

the SEs. Rather than finding this a hindrance, any relations

that CFs obey can be exploited to assess the quality of

experimental data over a given ‘ interval. We find that as a

result of stacking constraints and conservation of probability,

there are two equalities that the CFs must satisfy. We develop

and define these measures here.

We find the first by observing that, at n ¼ 1, due to stacking

constraints, Qcð1Þ þQað1Þ ¼ 1. Adding equations (5) and (6)

with n ¼ 1 immediately gives Xð1Þ ¼ �1=2. This suggests that
we define a figure-of-merit � as

� ¼
I

Ið‘Þ cosð2�‘Þ d‘: ð16Þ

� can be used to evaluate the quality of experimental DPs. For

an ideal, error-free DP, � ¼ �1=2. Since many DPs are known

to contain systematic error (Pandey et al., 1987; Sebastian &

Krishna, 1994), the amount by which � deviates from �1=2
can be used to assess how corrupt the data is over a given unit

‘ interval.
To find the second constraint, we observe that equation (7),

with r ¼ 1 and u ¼ 0, gives Prð01Þ ¼ Prð10Þ. We therefore find

from equation (8) that Prð00Þ þ 2Prð01Þ þ Prð11Þ ¼ 1. We can

write Prð01Þ ¼ Prð1Þ � Prð11Þ. This implies that

Prð00Þ þ 2Prð1Þ � Prð11Þ ¼ 1: ð17Þ
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authors (Berliner & Werner, 1986). We perform an integral over a unit ‘
interval instead of summing the magnitude of the difference between theory
and experiment. Also, we find it convenient to compare the corrected
diffraction intensities Ið‘Þ, rather than the total diffracted intensity Ið‘Þ as is
done elsewhere.
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Making the identification from equation (9) that

Qcð1Þ ¼ Prð1Þ, Qað2Þ ¼ Prð11Þ and Qcð2Þ ¼ Prð00Þ gives
2Qcð1Þ þQcð2Þ �Qað2Þ ¼ 1: ð18Þ

This suggests that we define a second figure-of-merit � to be

� ¼ 2Qcð1Þ þQcð2Þ �Qað2Þ: ð19Þ
� should be unity for error-free data. This can also be used to

evaluate the quality of the experimental data over a given unit

‘ interval.
Together, � and � are the figures-of-merit over a unit ‘

interval for a DP. Therefore, in the first part of �MSR (x2.1) we
evaluate each over candidate ‘ intervals and use this as a guide
in selecting an appropriate interval for �-machine recon-

struction. The chosen interval should have figures-of-merit in

good agreement with the theoretical values. The constraints �
and � imply that only two out of the first four CFs, Qcð1Þ,
Qað1Þ, Qcð2Þ and Qað2Þ, are independent. We choose to take

the n ¼ 2 terms as the independent parameters in the SEs.

This completes our presentation of �MSR. The overall

procedure is summarized in Table 1.

3. Structure and intrinsic computation from �-machines

In this section we briefly review several information- and

computation-theoretic quantities of physical import that can

be directly estimated from the reconstructed �-machine. We

also discuss physical interpretations of the reconstructed

�-machine, particularly how architectural features of the

�-machine correspond to known periodic stacking structures.

3.1. Measures of intrinsic computation

There are a number of different quantities in computational

mechanics that describe the way information is processed and

stored (Crutchfield & Feldman, 2003; Crutchfield et al., 2009).

We consider only the following.

Memory length r‘: The value of r that results at the termi-

nation of �MSR is an estimate of the stacking process’s

memory length, denoted r‘, since it is the number of MLs that

one must use to optimally represent the process’s sequence

statistics, given the accuracy of the original DP.8

Statistical complexity C�: The minimum average amount of

memory needed to statistically reproduce a process is known

as the statistical complexity C�. Since this is a measure of

memory, it has units of [bits]. It is the Shannon information

stored in the set of CSs,

C� ¼ �
P
	2S

Prð	Þ log2 Prð	Þ; ð20Þ

where S is the set of CSs for the process and Prð	Þ is the

asymptotic probability of CS 	. The latter is the left eigen-

vector, normalized in probability, of the state-to-state transi-

tion matrix T ¼Ps2A T
ðsÞ. Physically, the statistical complexity

is related to the average number of previous spins needed to

observe on scanning the spin sequence to make an optimal

prediction of the next spin.

Entropy rate h�: The amount of irreducible randomness per

ML after all correlations have been accounted for. It has units

of [bits/ML]. It is also known as the thermodynamic entropy

density in statistical mechanics and the metric entropy in

dynamical systems theory. It is given by the average per-state

spin uncertainty,

h� ¼ �
P
	2S

Prð	ÞP
s2A

T
ðsÞ
	!	0 log2 T

ðsÞ
	!	0 ; ð21Þ

where 	0 is the CS reached from 	 upon seeing spin s.

Physically, h� is a measure of the entropy density associated

with the stacking process.

Excess entropy E: The amount of apparent memory in a

process. The units of E are [bits]. It is defined as the amount of

Shannon information shared between the left and right halves

of a stacking sequence,

E ¼
X
!

Prð!Þ log2
 

Prð!Þ
Prð! ÞPrð!!Þ

!
: ð22Þ

Note that Feldman & Crutchfield (1998) and Crutchfield &

Feldman (2003) have shown that for range-r Markov

processes, these quantities are related by

C� ¼ Eþ rh�: ð23Þ
For general non-finite-range Markov processes, E can be

calculated with the methods of Crutchfield et al. (2009).

3.2. Causal states cycles and crystal structures

Since the �-machine reconstructed at r can distinguish at

most only 2r pasts, it can have no more than 2r CSs. The most

general reconstructed �-machine of memory length r is topo-

logically equivalent to a de Bruijn graph (Teubner, 1990) of

order r. By ‘most general’ we mean that all length-r pasts are
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Table 1
The �MSR algorithm.

Here !r signifies the set of length-r sequences.

(1) Set the acceptance threshold �.
(2) Find the CFs from the DP.

(a) Correct the DP for any experimental factors.
(b) Calculate the figures-of-merit (x2.6) over possible ‘ intervals to find

a suitable interval for �-machine reconstruction.
(c) Find the CFs over this interval.
(d) Estimate the fluctuation error Rerr from the DP.

(3) Estimate the stacking distribution Prð!rÞ from the CFs.
(a) Set r ¼ 1.
(b) Solve the SEs (Appendix A) for Prð!rÞ.

(4) Reconstruct the �-machine from the Prð!rÞ.
(a) Label candidate CSs by their length-r histories.
(b) Estimate transition probabilities between states from sequence

probabilities.
(c) Merge histories with equivalent futures to form CSs.

(5) Generate the CFs and the DP from the �-machine.
(6) Calculate the error �ðrÞ ¼ jR �Rerrj between the experimental and

�-machine DPs:
(a) If �ðrÞ � �, replace r with rþ 1 and go to step (3b);
(b) otherwise, stop.

8 One should be careful not to confuse r‘ with a physical interaction length.
Each represents a different quantity. The former originates from information-
theoretic considerations of the stacking structure, while the latter represents
the interaction length such as one would find in a Hamiltonian.
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distinguished and all allowed transitions between CSs

exist. Under these assumptions, the most general binary r ¼ 3

�-machine, which has 23 ¼ 8 CSs and 23þ1 ¼ 16 transitions, is

shown in Fig. 2.

It is known that de Bruijn graphs can be broken into a finite

number of closed, non-self-intersecting loops called simple

cycles (SCs) (Canright & Watson, 1996). By analogy, we

define a causal-state cycle (CSC) as a finite, closed, non-self-

intersecting, symbol-specific path on an �-machine. We denote

a CSC by the sequence of CSs visited in square brackets ½�	.
The states themselves are labeled with a number that, when

translated into binary notation, gives the sequence of the last r

spins leading to that CS. For example, for an r ¼ 3 recon-

structed �-machine, CS S5 means that 101 were the last three

spins observed before reaching that CS. The period of the CSC

is the number of CSs that comprise it.

We begin by noting that a purely crystalline structure is

simply the repetition of a sequence of MLs. This is realized on

an �-machine as a CSC. That is, an �-machine consisting of a

single CSC repeats the same state sequence endlessly, giving a

periodic stacking sequence, which physically is a crystal

structure. It is therefore useful to catalog all of the possible

CSCs on an r ¼ 3 �-machine, and this is done in Table 2. There

are 19 CSCs on an r ¼ 3 �-machine, and each corresponds to a

potential crystal structure. (These should be verified by tracing

them out on Fig. 2.)

3.3. SFs on �-machines

Suppose an �-machine has a single CSC that occasionally

allows for deviations from strictly periodic stacking. That is,

instead of each CS having a unique successor state as before,

there is some small probability that a transition will occur from

one of the CSs that interrupts the periodic repetition of CSs.

Further suppose that this interruption is brief and that the CS

path followed along this deviation quickly returns to the

dominant CSC. Physically, this break in the periodic repetition

of MLs corresponds to an SF. By studying the placement,

frequency and length of these interruptions, one can associate

well known SFs with these alternate paths.

Note, however, that nothing in the development of �MSR

requires that there be a single dominant CSC, or that the

interruptions be small. In fact, while this aids in the inter-

pretation of the subsequent �-machine, the number of CSs and

the transition probabilities between them can be such that no

CSC is dominant, resulting in a highly disordered crystal.

Additionally, there could exist more than one

kind of deviation from a dominant CSC. In

this way, an �-machine describes a greater

range of crystal structures than simply a

particular crystal structure interspersed with a

particular kind of SF.

A systematic interpretation of the CS

architecture of �-machines reconstructed

from diffuse DPs, and hence describing

disordered stacking sequences, is a current

topic of research.

4. Summary

�MSR offers a number of significant

features in the discovery and description of

planar disorder. (i) There is no need to

assume an underlying periodic (crystalline)

stacking structure. Indeed, �MSR makes no

assumption at all about what periodic or

fault structure may be present. In its current
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Figure 2
The most general r ¼ 3 �-machine. We show only the recurrent portion of the �-machine, as
the transient part is not physically relevant (at this stage). Here, the CSs are labeled by the
last three spins seen, i.e. S5 means that 101 were the last three spins seen. The numbers in
parentheses are the asymptotic CS probabilities. The edge label sjp indicates a transition on
spin s with probability p.

Table 2
The 19 CSCs on an r ¼ 3 �-machine.

In the first column, we give the CSC and, in the second, we show the stacking
sequence in the Hägg notation implied by this CSC. If this CSC represents the
sole causal architecture on the �-machine, then we can interpret it as a crystal
structure, as shown in the third column. Some CSCs come in pairs related by
spin-inversion symmetry (Varn & Canright, 2001), i.e. [S0] and [S7] are both
3C structures, differing only in chirality. In cases where the Ramsdell notation
is identical for different structures, we have attached a subscript to distinguish
them. We list the period-8 hexagonal structures with a subscript to
differentiate them from the more common 8H structure (00001111). One
must perform �MSR at r ¼ 4 to discover this latter 8H structure.

½S0	 (0)
 3C
½S7	 (1)
 3C
½S2S5	 (01)
 2H
½S1S3S6S4	 (0011)
 4H
½S1S3S7S6S4S0	 (000111)
 6H
½S5S2S4S1S3S7	 (001101)
 6Ha

½S2S5S3S7S4S1	 (110010)
 6Ha

½S5S2S4S0S1S3S7S6	 (00011101)
 8Ha

½S2S5S3S7S6S4S0S1	 (11100010)
 8Ha

½S3S6S5	 (011)
 9R
½S4S1S2	 (100)
 9R
½S7S6S5S3	 (0111)
 12R
½S0S1S2S4	 (1000)
 12R
½S3S6S4S0S1	 (00011)
 15R
½S4S1S3S7S6	 (11100)
 15R
½S5S2S4S0S1S3S6	 (0001101)
 21Ra

½S2S5S3S7S6S4S1	 (1110010)
 21Ra

½S3S6S4S0S1S2S5	 (0001011)
 21Rb

½S4S1S3S7S6S5S2	 (1110100)
 21Rb
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formulation �MSR is, however, limited to Markov models.

(ii) �MSR is not limited to stacking structures that contain

only weak faulting. That is, �MSR can be used to describe

the stacking for any amount and kind of ordered and

disordered sequence that a material may contain. (iii) �MSR

uses all of the information in the diffraction pattern (DP) –

Bragg-like and broadband – instead of considering only the

effect disorder has on the Bragg-like peaks alone. (iv)

�MSR defines two figures-of-merit – � and � – that can be

used to evaluate the error in experimental DPs. (v) �MSR

results in the minimal and unique statistical expression of the

stacking sequence—the �-machine. (vi) Finally, from the

reconstructed �-machine, parameters of physical interest such

as the entropy per ML, the statistical complexity, various

length parameters and the average stacking-fault energy for

disordered stacking sequences are directly calculable (Varn et

al., 2007).

In addition to its application in discovering and describing

disordered stacking in ZnS single crystals (Varn et al., 2007),

�MSR is well suited to treat other materials. For example, high

quality DPs (Boulle et al., 2009, 2010; Dompoint et al., 2011,

2012) for single-crystal SiC over large intervals in reciprocal

space have recently been obtained. SiC is isostructural to ZnS

and of considerable current interest. As a large-band-gap

semiconductor, its electrical properties are highly influenced

by its stacking structure, both ordered and disordered. �MSR

is also applicable to the study of DPs from rare-earth

compounds of the composition R2Co17 (R = rare earth).

Studied for their possible use as permanent magnets, at least

one of these materials (Gd2Co17) shows significant disorder

along the stacking direction that is not readily understood in

terms of a simple random faulting model (Estevez-Rams,

Martinez et al., 2001). Since Estevez-Rams and co-workers

(Estevez-Rams, Martinez et al., 2001; Estevez-Rams, Penton-

Madrigal et al., 2001; Estevez-Rams, Aragon-Fernandez et al.,

2003; Estevez-Rams, Leoni et al., 2003) have given a procedure

to find the CFs between MLs directly from their powder DP,

steps 3–6 of �MSR (see Table 1) could be used to reconstruct

the �-machine, possibly shedding light on the nature of these

SFs. We anticipate that there are many other layered materials

of theoretical and practical interest that show planar disorder

and that would be amenable to an �MSR analysis as presented

here.

Since �MSR relies on short-range correlations to construct

the �-machine, materials which exhibit effectively infinite-

range interactions between MLs, such as are found in some

metals, may fall outside the range of applicability of �MSR.

Although it may be possible for infinite-range interactions to

generate stacking structures which are well described by a

small memory length, care should be taken. We discuss prac-

tical issues with using �MSR, and especially the relationship

between the memory length, physical interaction lengths and

other characteristic length parameters, in a forthcoming paper

(Varn et al., 2013).

Additionally, �MSR also contributes to the machine-

learning side of computational mechanics. �MSR is novel in

that we use a power spectrum to reconstruct the �-machine

instead of a temporal or spatial data sequence, as prior algo-

rithms have.

There are, however, some limitations to �MSR, as devel-

oped here. We only attempted �-machine reconstruction up to

r ¼ 3. It has recently been shown that a model for a simple

solid-state transformation from the 2H to the 3C structure in

CPSs results in stacking sequences that imply an infinite

memory length (Varn & Crutchfield, 2004). While in principle

one can attempt �MSR for any r, there are computational

complexity difficulties. We feel that the general case of r ¼ 4 is

tractable. We also suspect that there are alternative algorithms

that will greatly reduce the computational complexity of

finding solutions.

APPENDIX A
The spectral equations

A1. r = 1

The SEs at r ¼ 1 are linear and admit an analytical solution.

Specifically, we write out equations (7), (8) and (9) for r ¼ 1

and solve them. We find

Prð11Þ ¼ Qað2Þ;
Prð01Þ ¼ 1

2
½1�Qcð2Þ �Qað2Þ	;

Prð00Þ ¼ Qcð2Þ:

A2. r = 2

Similarly, the SEs at r ¼ 2 are linear and can be solved

analytically. Again, we write out equations (7), (8) and (9) for

r ¼ 2 and solve them. We find

Prð000Þ ¼ ½3Qcð2Þ � 2Qcð3Þ � 3Qað2Þ � 4Qað3Þ þ 3	=6;
Prð001Þ ¼ ½3Qcð2Þ þ 2Qcð3Þ þ 3Qað2Þ þ 4Qað3Þ � 3	=6;
Prð010Þ ¼ ½�3Qcð2Þ � 2Qcð3Þ � 3Qað2Þ �Qað3Þ þ 3	=3;
Prð011Þ ¼ ½3Qcð2Þ þ 4Qcð3Þ þ 3Qað2Þ þ 2Qað3Þ � 3	=6;
Prð100Þ ¼ ½3Qcð2Þ þ 2Qcð3Þ þ 3Qað2Þ þ 4Qað3Þ � 3	=6;
Prð101Þ ¼ ½�3Qcð2Þ �Qcð3Þ � 3Qað2Þ � 2Qað3Þ þ 3	=3;
Prð110Þ ¼ ½3Qcð2Þ þ 4Qcð3Þ þ 3Qað2Þ þ 2Qað3Þ � 3	=6;
Prð111Þ ¼ ½�3Qcð2Þ � 4Qcð3Þ þ 3Qað2Þ � 2Qað3Þ þ 3	=6:

A3. r = 3

At r ¼ 3, we require 16 relations to constrain the length-4

binary-sequence probabilities. Although we now encounter

nonlinearities, the SEs may solved numerically.

At r ¼ 3, equation (7) implies the following seven equa-

tions:

Prð0111Þ ¼Prð1110Þ;
Prð0001Þ ¼Prð1000Þ;

Prð0011Þ þ Prð1011Þ ¼Prð0111Þ þ Prð0110Þ;
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Prð0101Þ þ Prð1101Þ ¼Prð1011Þ þ Prð1010Þ;
Prð0010Þ þ Prð1010Þ ¼Prð0101Þ þ Prð0100Þ;
Prð0001Þ þ Prð1001Þ ¼Prð0011Þ þ Prð0010Þ;
Prð0100Þ þ Prð1100Þ ¼Prð1001Þ þ Prð1000Þ:

Equation (8) provides for normalization, providing one

additional constraint. Finally, the remaining eight SEs are

found by relating sequence probabilities to CFs as described

by equation (9). We further reduce the last two relations which

involve sequence probabilities of length-5 to those of length-4

via memory-length reduction. We find

Qcð2Þ ¼Prð0000Þ þ Prð0001Þ þ Prð0010Þ þ Prð0011Þ;
Qað2Þ ¼Prð1100Þ þ Prð1101Þ þ Prð1110Þ þ Prð1111Þ;
Qcð3Þ ¼Prð0110Þ þ Prð0111Þ þ Prð1010Þ þ Prð1011Þ

þ Prð1100Þ þ Prð1101Þ;
Qað3Þ ¼Prð0010Þ þ Prð0011Þ þ Prð0100Þ þ Prð0101Þ

þ Prð1000Þ þ Prð1001Þ;
Qcð4Þ ¼Prð1111Þ þ Prð1000Þ þ Prð0100Þ þ Prð0010Þ

þ Prð0001Þ;
Qað4Þ ¼Prð0000Þ þ Prð0111Þ þ Prð1011Þ þ Prð1101Þ

þ Prð1110Þ;

Qcð5Þ ¼
Pr2ð0000Þ

Prð0000Þ þ Prð0001Þ þ
Prð0011ÞPrð0111Þ

Prð0111Þ þ Prð0110Þ
þ Prð0101ÞPrð1011Þ
Prð1011Þ þ Prð1010Þ þ

Prð0110ÞPrð1101Þ
Prð1101Þ þ Prð1100Þ

þ Prð0111ÞPrð1110Þ
Prð1110Þ þ Prð1111Þ þ

Prð1001ÞPrð0011Þ
Prð0011Þ þ Prð0010Þ

þ Prð1010ÞPrð0101Þ
Prð0101Þ þ Prð0100Þ þ

Prð1011ÞPrð0110Þ
Prð0110Þ þ Prð0111Þ

þ Prð1100ÞPrð1001Þ
Prð1001Þ þ Prð1000Þ þ

Prð1101ÞPrð1010Þ
Prð1010Þ þ Prð1011Þ

þ Prð1110ÞPrð1100Þ
Prð1100Þ þ Prð1101Þ ;

Qað5Þ ¼
Pr2ð1111Þ

Prð1111Þ þ Prð1110Þ þ
Prð1100ÞPrð1000Þ

Prð1000Þ þ Prð1001Þ
þ Prð1010ÞPrð0100Þ
Prð0100Þ þ Prð0101Þ þ

Prð1001ÞPrð0010Þ
Prð0010Þ þ Prð0011Þ

þ Prð1000ÞPrð0001Þ
Prð0001Þ þ Prð0000Þ þ

Prð0110ÞPrð1100Þ
Prð1100Þ þ Prð1101Þ

þ Prð0101ÞPrð1010Þ
Prð1010Þ þ Prð1011Þ þ

Prð0100ÞPrð1001Þ
Prð1001Þ þ Prð1000Þ

þ Prð0011ÞPrð0110Þ
Prð0110Þ þ Prð0111Þ þ

Prð0010ÞPrð0101Þ
Prð0101Þ þ Prð0100Þ

þ Prð0001ÞPrð0011Þ
Prð0011Þ þ Prð0010Þ :
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